Core Classifier Algorithm: A Hybrid Classification Algorithm Based on Class Core and Clustering
نویسندگان
چکیده
Machine learning classification algorithms vary drastically in their approaches, and researchers have always been trying to reduce the common boundaries of nonlinear classification, overlapping, or noise. This study summarizes steps hybridizing a new algorithm named Core Classify Algorithm (CCA) derived from K-nearest neighbor (KNN) an unsupervised partitioning (K-means), aiming avoid unrepresentative Cores clusters while finding similarities. hybridization step is meant harvest benefits combining two by changing results through iteration obtain most optimal classifying data according labels with more higher accuracy better computational efficiency. Our approach was tested on total five datasets different domains: one phishing URL, three healthcare, synthetic dataset. demonstrate that CCA model non-linear experiments representing lower than dataset which represented linear achieved 100%, equal rank Random Forest, Support Vector Machine, Decision Trees. Moreover, our also can be used exploit flaws specific further improve performance.
منابع مشابه
Fuzzy Core DBScan Clustering Algorithm
In this work we propose an extension of the DBSCAN algorithm to generate clusters with fuzzy density characteristics. The original version of DBSCAN requires two parameters (minPts and ) to determine if a point lies in a dense area or not. Merging different dense areas results into clusters that fit the underlined dataset densities. In this approach, a single density threshold is employed for a...
متن کاملA Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm
The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, ...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملTabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12073524